Online Appendix for "The Role of Social Norms in Old-age Support: Evidence from China"

Please click here for the newest version of my job market paper

Xuezhu Shi *

March 3, 2020

Appendix

A.1 Different representations of outcome variables

In the previous results, the outcome variable regarding the amount of the transfer is the gross amount of the transfer. The results when using the gross amount of the transfer might be affected by the outliers in the survey sample, so I capped the amount of the transfer used, and this might create bias in the results. Using the logarithms of the amount of transfer and also the corresponding income or expenditure percentage help to reduce the sensitivity of the results caused by the outliers. For both datasets, I run Equation (??) on the new outcome variables for the amount of the transfer: the logarithms of the amount of the transfer and the amount of the transfer as a percentage of total income. The results are shown in Table A.3. For the CHARLS results, the father demonstration effect for the outcome variable, the percentage of income, appears to be consistent with the results in Table ??, although with an 88% significance level. The log amount of the transfer has a marginally significant father demonstration effects for the transfer percentage in the CHARLS are both positive and insignificant. With the CHFS, the results show the insignificant but negative mother demonstration effect for the percentage outcome and the log amount of any transfer provided by the parents.

The transfers from the elderly are not included in the construction of the outcome variables used in the main regressions. I change the transfer outcome variables to net transfer variables. If *any transfer* equals 1 and the parents receive the transfers from or are living together with their elderly parents, I change the corresponding value to 0. For the amount of the monetary transfer, I use the net transfer provided by the parents, which is the amount of transfer provided to the parents minus the amount of the transfer received by them from their elderly parents. The change is made for both datasets. The results for the net transfers are also included in Table A.3. They are consistent with the main results, except for the negative father demonstration effect for *any transfer* in the CHFS. The magnitudes of the demonstration effect for the probability of providing any net transfer increase beyond the main results.

^{*}School of Insurance and Economics, University of International Business and Economics. Email: shixuezhu@outlook.com.

A.2 Household size adjustment

Qian in her paper "Quantity-Quality and the One-Child Policy: the Only-Child Disadvantage in School Enrolment in Rural China" proposed a method to adjust for the number of children for households which with more than one child and first child is a girl. She constructed a sample to "estimate the lower bound of the absolute value of the family size effect". The method estimates the "extra" number of boys using the time variation of the key policy used in the paper and also the gender of the first child, then adjust the household size accordingly. Applying this method in my own setting, there are two ways of specification I can use. The first specification is to use the existing IV to estimate the number of "extra" children related to the gender of the first child for different provinces. In this specification, the gender dummy is 1 if the first child is a boy, and 0 otherwise. According to Qian (2009), the "extra" children in a family is mainly due to the first child is a girl. I use the second specification, which the time variation of my policy ban on gender selective abortions times the gender dummy for the first child. In the second specification, this dummy is 1 if the first child is a girl and 0 otherwise. Again the number of "extra" children is estimated for different provinces. If the estimation is insignificant for a province, that province-level household size will not be adjusted. Also, as Qian did in her paper, I adjust the number of household size based on whether a household belongs to Han or ethnic minority group.

A.3 *Han* culture and norm

As discussed in the background section, the norm of providing support for the elderly is closely linked with Confucianism and filial piety. This raises a possible concern: because the culture of Confucianism is well-known in Chinese society, not only do parents teach their children to provide support for the elderly in the future through the demonstration effect, but also the surrounding community, in schools, the neighbourhood, or the media, could shape young children's predilection to provide support to their parents in their old age. *Han* ethnic group is the majority ethnic group in China and filial piety is the key value in the *Han* group. If other channels apart from the parents affect children's preferences regarding old-age support, the demonstration effect from the parents will be smaller or less significant in a *Han*-ethnic dominated community or an exclusively *Han*-ethnic group. In the community survey questionnaire in the CHARLS, there is information on whether minority ethnic groups are living in the same community that the parents live in. I generate a dummy that equals 1 if there are minority ethnic groups living in the community, and 0 otherwise. From the results in Table A.6, the father demonstration effect for *any-transfer* and *visit days* in communities with people from minority ethnic groups are significant, vet the differences are insignificant for the fathers in two types of community.

There is no information on the community ethnic composition in the CHFS, but there is detailed information on *P*'s ethnic groups. So I use this information to check whether *Han* ethnic group are more likely to demonstrate the filial piety to their children than other ethnic groups. I create a *Han* dummy that equals 1 for members of the *Han* ethnic group, and 0 otherwise. In the heterogeneity analysis results in Table A.7, the mother demonstration effects are significant for *Han* ethnic groups in terms of *any-transfer* and *visit days*. The effects are insignificant for the non-*Han* group. Yet, the differences are again insignificant. The heterogeneity analysis results from the CHARLS and the CHFS seems to lead to opposite implications. The CHARLS results imply the social influence might act as the complement for the family demonstration effect, and the CHFS results indicate that mothers in *Han* ethnic group may still perceive self-demonstration of the filial piety more important than other ethnic minority groups. The only conclusion here is that the family demonstration effect and other social influences might co-exist as channels passing on the filial piety.

A.4 Additional Notes

Data and IV construction in CHARLS: Given the high average age of the respondents, the sample size for the available observations in terms of the transfer provided by the respondents to their parents is small. But many of the respondents have children of working age, so most of them receive support from their children. To fit the original dataset into my setting, I regard the support for the respondents provided by their children as the support from parents to their elderly parents discussed in the previous section. The respondents in the survey are the passive recipients of old-age support. Namely, they are the elderly the main regressions in the CHARLS. The grandchildren of the survey's respondents are the third generation. I construct a new sample that covers the adult children of the survey respondents, namely, the parents. However, due to the questionnaire design of the CHARLS, the demographic information on the parent and the grandchild generation is not as detailed as the information on the elderly parents in my regression. The available demographic variables in the 2011 wave about the grandchildren are only the gender and the number of them. In the 2013 and 2015 wave, the only available demographic variable is the number of the children.

I have had to make certain assumptions when constructing the gender of the first child IV in CHARLS. As discussed above, I have restructured the original dataset from a dataset where the main respondents are the O generation in my setting to a dataset in which the main observations are the children of the main respondents. In the regression setting, the children of the respondents are the P generation. The original dataset gives no information on the birth year but gives the gender composition and number of the K generation. The year of birth is available only if grandchildren are living with the first generation.

Moreover, many observations are missing for P and K that are not living together with O. Apart from this information, the dataset does provide information on the gender composition and number of the third generation if she or he is above the age of 16. For most households, I use this information to work out the gender of the first child. Some estimations are still needed in this process; they are based on the parents' age, especially the average age of female parents when their children are born, in order of birth, in both urban and rural areas.

For households affected by the policy ban after 2003 As discussed, using a subsample includes only households affected by the policy ban after 2003 might not provide well-identified results when the gender of the first child is kept as the instrumental variable. This is because, even with the policy ban, the gender ratio in some provinces is still high. I use a subsample check to provide relevant evidence. I divide the sample that includes only households affected by the policy ban after 2003 into two subsamples, one showing a high gender-ratio and the other showing a low gender-ratio. A province is classified as a high gender-ratio province 1 if in

the 2010 Population Census gender ratio there is above the national gender ratio, and 0 otherwise. Table A.14 shows the results of this simple subsample check. The father demonstration effects are positive for the amount of the transfer and the visits paid for the high gender-ratio provinces. The father effect is only significant for the visits paid in the low gender-ratio province subsample. The results from the CHFS are also in Table A.14, which shows that the only significant mother demonstration effect is the effect on the amount of the transfer provided in low gender-ratio provinces. The results from this simple sample check add a piece of suggestive evidence that depending on the gender ratio level, different provinces might lead to the demonstration effect differently.

A.5 Figures and Tables

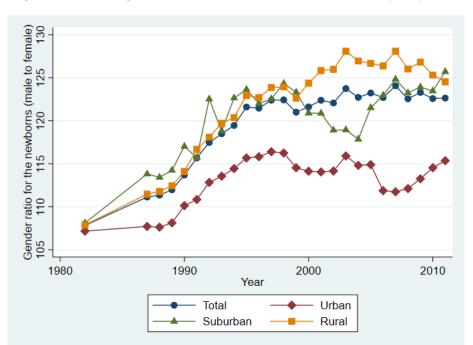


Figure A.1: Actual gender ratios for the newborns in China: the yearly trend

Note: The information is obtained from the China Population and Employment Statistics Yearbook. 1982-2011. *y*-axis is the male to female gender ratio for the newborns (female=100). *x*-axis is the year 1982 to 2011. The yearly trend started in 1987. The circle dot is the national male to female gender ratio. The diamond dot represents the male to female gender ratio in urban areas only. The triangle and square dots are for the male to female gender ratio in township (suburban) areas and rural areas respectively.

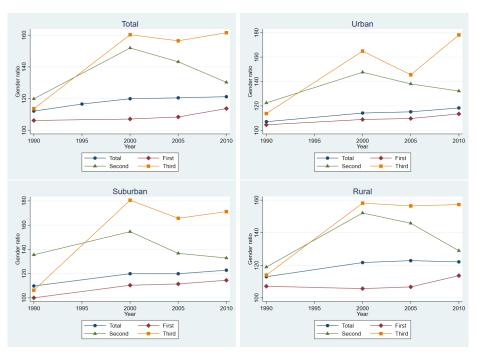


Figure A.2: Actual gender ratios for the newborns in China: by birth order

Note: The information is obtained from the National Population Census. 1990, 1995, 2000, 2005 and 2010. The figure shows four graphs on the male-to-female gender ratio (female=100) of the new-borns by different birth orders. From left to right, the graphs show the gender ratios in China, urban areas, township (suburban) areas, and rural areas. The circle dot is the overall gender ratio. The diamond dot represents the ratio for the first-born children. The triangle and square dots are for the male to female gender for the second-born and the third-born children respectively.

		I	IV: CHARLS (mostly rural)	(mostly rural)			IV: CHF	IV: CHFS(mostly urban	rban)
cluster-level	0	O household			province		Ь	P household	
VARIABLES	any-transfer	amount	visit days	any-transfer	amount	visit days	any-transfer	amount	visit days
maleP	-0.0802^{**}	-230.5	-29.89***	-0.0802*	-230.5	-29.89***	-0.0518	-237.7	-3.363
	(0.0391)	(392.6)	(8.057)	(0.0467)	(327.1)	(11.26)	(0.0393)	(159.4)	(13.13)
sex_ratioK	-0.0450	-273.3	-4.315	-0.0450	-273.3	-4.315	-0.0733^{**}	-96.20	-46.92^{***}
	(0.0411)	(356.7)	(7.011)	(0.0428)	(398.9)	(6.859)	(0.0362)	(151.3)	(10.86)
$maleP \times sex_ratioK$	0.125^{***}	472.9	76.49^{***}	0.125^{**}	472.9	76.49^{***}	0.0412	259.2	49.37^{**}
	(0.0482)	(444.9)	(9.592)	(0.0523)	(372.5)	(14.47)	(0.0601)	(255.6)	(19.88)
$sex_ratioK+$	0.079^{***}	200.0	72.17^{***}	0.079^{***}	200.0	72.17^{***}	-0.032	163.0	2.455
$maleP imes sex_ratioK$	(0.022)	(247.3)	(6.221)	(0.022)	(231.9)	(12.89)	(0.042)	(181.5)	(14.77)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	\mathbf{Yes}	Yes	Yes	\mathbf{Yes}	Yes	Yes	Yes	$\mathbf{Y}_{\mathbf{es}}$
Observations	12,232	12,232	12,232	12,232	12,232	12,232	19,509	19,509	19,509
R-squared	0.201	0.050	0.610	0.201	0.050	0.610	0.280	0.203	0.159
Mean	0.401	831.2	118.7	0.401	831.2	118.7	0.303	489.1	91.66
Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.01. maleP is the gender of P. sex_ratioK is the	ors in parentheses.	Stars indic	ate statistical si	gnificance. *** p<	0.01, ** p<0	.05, $* p < 0.1$. n	naleP is the gender	: of P. sex_r	atioK is the
gender ratio of K in the household of P		presents the	e mother demon	stration effect. sex	ratioK + i	$naleP \times sex_n$	and represents the mother demonstration effect. $sex_ratioK + maleP \times sex_ratioK$ shows the father demonstration effect.	ather demons	tration effect.
The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any	s are the dummy in	idicating wh	ether parents p	rovide any financia	l transfer to	their elderly pa	trents (any - $transfe$	er), the amou	int of any
transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size,	, and the number o	of days spent	on visits paid 1	to their elderly par	ents per yeaı	(visit days).	The key controls ar	re P 's househ	old-size,
gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education,	on, hukou status,	whether live	in urban areas,	siblings, marital s	tatus, occupa	tion, distance 1	from O , and O 's tra	ansfer to P , a	we, education,
working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information	status, any deposit	, hukou stat	us, household ir	ncome and hours of	O taking ca	re of P 's K , de	pending on the ava	ulability of th	ie information
in the CHARLS and the CHFS. The standard error is clustered at the O's household-level and the province level for the CHARLS and the cluster-level is the P'	HFS. The standard	error is clus	tered at the O 's	s household-level ar	nd the provin	ce level for the	CHARLS and the	cluster-level	is the P 's
household-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for	5. The IVs are the	gender of the	e first child for h	nouseholds having	at least one c	hild in or after	2003 and the prefe	ctural compli	ance index for
		-							

Table A.1: The demonstration effect on the provision of old-age support: different cluster levels

	IV: CHAR	LS (mostly	y rural)	IV: C	HFS (mostly	urban)
VARIABLES	$any\mbox{-}transfer$	amount	$visit\ days$	$any\-transfer$	amount	$visit\ days$
maleP	-0.0774	-230.3	-31.03**	-0.0497	-230.8	-1.524
	(0.0491)	(308.0)	(12.27)	(0.0432)	(165.2)	(16.01)
$more_sons$	-0.0387	-254.6	-3.464	-0.0695**	-89.49	-44.25***
	(0.0406)	(368.1)	(7.092)	(0.0321)	(126.1)	(10.14)
$maleP \times more_sons$	0.120^{**}	467.7	78.72***	0.0397	242.9	46.80**
	(0.0566)	(419.3)	(14.75)	(0.0606)	(271.0)	(22.87)
hh-size	-0.00835	-18.43	-2.253	-0.00467	-14.67	-7.549^{***}
	(0.0131)	(81.63)	(1.865)	(0.00498)	(18.17)	(1.227)
$maleP \times hh\text{-}size$	-0.000595	307.2^{**}	10.72^{***}	-0.00509	26.01	13.32^{***}
	(0.0119)	(149.2)	(2.888)	(0.00624)	(23.66)	(2.734)
$more_sons+$	0.081^{***}	213.1	75.25***	-0.030	153.4	2.551
$maleP \times more_sons$	(0.029)	(207.1)	(12.36)	(0.043)	(190.1)	(16.83)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,232	12,232	12,232	19,509	19,509	19,509
R-squared	0.200	0.049	0.602	0.280	0.202	0.158

Table A.2: The demonstration effect on the provision of old-age support: Dummy gender ratio

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.1. maleP is the gender of P. more_sonsK is a dummy representing whether the gender ratio of K in the household of P is larger or equal to 0.5, and it is the mother demonstration effect. more_sons + maleP × sex_ratioK shows the father demonstration effect. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 for the CHFS.

		IV: CHA	IV: CHARLS (mostly rural)	al)		IV: CHF	IV: CHFS (mostly urban)	
VARIABLES	any net	net total	log amount of	percentage of	any net	net total	log amount of	percentage of
	uransier	amount	uransier	Income	uransier	amount	UTAIISIET	Income
maleP	-0.0969*	-35,144	-0.315	-0.0468^{**}	-0.00450	382.3	-0.527*	-0.00497
	(0.0514)	(37, 300)	(0.363)	(0.0226)	(0.0359)	(851.0)	(0.307)	(0.00649)
sex_ratioK	-0.0354	3,950	-0.141	-0.0178*	-0.0977***	-104.9	-0.361^{\dagger}	-0.00205
	(0.0439)	(4, 241)	(0.290)	(0.0105)	(0.0264)	(925.4)	(0.224)	(0.00616)
$maleP \times sex_ratioK$	0.129^{**}	-1,141	0.719	0.0593^{*}	-0.0375	-507.8	0.0676	-0.000853
	(0.0582)	(14, 263)	(0.481)	(0.0335)	(0.0521)	(1,523)	(0.448)	(0.0104)
hh-size	-0.012	-8,070	-0.117	-0.00530^{***}	-0.010^{**}	-8.107	-0.0912^{**}	-0.00125
	(0.014)	(7, 373)	(0.0878)	(0.00148)	(0.005)	(30.94)	(0.0421)	(0.000819)
$maleP \times hh$ -size	0.011	10,244	0.0754	0.0137^{***}	-0.006	-61.41	0.0601	0.00137
	(0.014)	(8,902)	(0.0871)	(0.00325)	(0.006)	(54.87)	(0.0486)	(0.00112)
$sex_ratioK+$	0.094^{***}	2,809	0.578^{*}	0.041	-0.135^{***}	-612.7	-0.293	-0.002
$maleP \times sex_ratioK$	(0.026)	(15,917)	(0.346)	(0.030)	(0.036)	(788.7)	(0.309)	(0.007)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
P income level	Yes	Yes	Yes	No	$\mathbf{Y}_{\mathbf{es}}$	$\mathbf{Y}_{\mathbf{es}}$	Yes	No
O demographics	Yes	$\mathbf{Y}_{\mathbf{es}}$	Yes	Yes	$\mathbf{Y}_{\mathbf{es}}$	\mathbf{Yes}	Yes	$\mathbf{Y}_{\mathbf{es}}$
Observations	12,232	12,232	12,232	12,232	19,509	19,509	19,509	19,509
R-squared	0.198	0.006	0.120	0.507	0.056	0.009	0.202	0.040
$Notes: {\rm Robust}$ standard errors in parentheses. Stars indicate statistical significance. ***	ors in parent	heses. Stars in	idicate statistical si	gnificance. *** p<0	.01, ** p<0.05	, * p<0.1. ma	p<0.01, ** p<0.05, * p<0.1. male P is the gender of P. sex_ratioK	F. P. sex_ratioK
is the gender ratio of K in the household of P and represents the mother demonstration effect. sex_ratio $K + male P \times sex_ratio K$ shows the father	the househol	d of P and rel	presents the mother	demonstration effe	ct. sex_ratiol	$X + maleP \times s$	sex_ratioK shows	the father
demonstration effect. The outcome variables from left to right are the probability of providing any net transfers, the net amount of the transfer provided, the	outcome varia	ables from left	to right are the pr	obability of providi	ig any net trar	isfers, the net	amount of the trans	sfer provided, the
log amount of the total transfer provided, and the percentage of the amount of the total transfer in the total household income of P . The key controls are P 's	nsfer provide	d, and the per	centage of the amo	unt of the total tra	sfer in the tot	al household in	ncome of P . The ke	y controls are P 's
household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's	, income edue	cation, hukou	status, whether live	e in urban areas, sil	olings, marital	status, occupa	tion, distance from	O, and O 's
transfer to P , age, education, working status, retirement status, any deposit, $hukou$ status, household income and hours of O taking care of P 's K , depending	on, working st	tatus, retireme	ont status, any depo	osit, hukou status,]	nousehold inco	me and hours	of O taking care of	P's K , depending
on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the	formation in	the CHARLS	and the CHFS. Th	e standard error is	clustered at th	e prefectural c	ity level for the CH	ARLS and the
cluster-level is the province-level in	-level in the	CHFS. The IV	's are the gender of	the first child for h	ouseholds havi	ng at least one	the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the	003 and the

Table A.3: Different representations of the probability and the amount of transfers

			IV: CHFS	S (mostly rural)		
	Spe	cification 1	,	,	Specification	2
VARIABLES	$any\mathchar`-transfer$	amount	$visit\ days$	any-transfer	amount	$visit\ days$
maleP	-0.0540	-223.0	0.756	-0.0508	-219.9	0.112
	(0.0422)	(163.9)	(15.64)	(0.0439)	(170.3)	(16.27)
sex_ratioK	-0.0733**	-98.71	-46.90***	-0.0738**	-99.16	-46.98***
	(0.0345)	(137.2)	(10.80)	(0.0343)	(135.9)	(10.79)
$maleP \times sex \ ratioK$	0.0408	260.5	49.19**	0.0418	262.6	49.49**
	(0.0648)	(294.6)	(24.57)	(0.0645)	(291.9)	(24.56)
hh-size	-0.00923	-17.27	-10.55***	-0.00782	-14.77	-9.944***
	(0.00574)	(19.91)	(1.184)	(0.00602)	(17.63)	(1.199)
$maleP \times hh$ -size	-0.000205	36.45	17.02***	-0.00307	29.84	15.80***
	(0.00727)	(29.98)	(2.787)	(0.00800)	(25.10)	(2.994)
sex ratioK+	-0.032	161.8	2.294	-0.032	163.4	2.504
$maleP \times sex_ratioK$	(0.045)	(204.7)	(17.94)	(0.045)	(203.6)	(17.94)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	19,509	19,509	19,509	19,509	19,509	19,509
R-squared	0.280	0.203	0.159	0.280	0.202	0.159

Table A.4: Household size adjusted using Qian's method (Qian, 2009)

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.1. maleP is the gender of P. more_sonsK is a dummy representing whether the gender ratio of K in the household of P is larger or equal to 0.5, and it is the mother demonstration effect. more_sons + maleP × sex_ratioK shows the father demonstration effect. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information in the CHFS. The standard error is clustered at the cluster-level is the province-level. The IV is the gender of the first child for households having at least one child in or after 2003 for the CHFS.

Table A.5: Son preference in China

	Url	oan areas	Ru	ral areas
CHFS	No.	Percentage	No.	Percentage
Prefer sons	$1,\!159$	8.43%	621	9.25%
Prefer daughters	2,904	21.12%	672	10.01%
Indifferent	$9,\!685$	70.45%	$5,\!423$	80.75%

Notes: The question asked in the 2013 CHFS wave is "Do you think it is better to have a son or it is better to have a daughter?". I separate the sample into people who live in urban areas and those who live in rural areas.

	IV:	CHARLS (mc	stly rural)
VARIABLES	any-transfer	amount	visit days
maleP	-0.0591	-174.0	-49.90***
	(0.0725)	(494.5)	(17.56)
sex_ratioK	-0.0141	-559.5	-5.602
(Non-Mino. mother	(0.0780)	(535.2)	(10.25)
$demonstration \ effects)$			
minority	-0.0300	-412.2	-0.749
	(0.0677)	(411.8)	(9.165)
$maleP \times sex_ratioK$	0.0469	540.2	104.3^{***}
	(0.114)	(585.2)	(22.49)
$sex_ratioK \times Minority$	-0.0760	695.4	6.357
(Difference in mother	(0.114)	(699.5)	(13.90)
$demonstration \ effects)$			
$maleP \times Minority$	-0.0624	-1.668	20.78
	(0.0920)	(575.3)	(15.57)
$sex_ratioK \times Minority$	0.183	-239.6	-35.77
$\times maleP$	(0.163)	(864.3)	(22.90)
Mino. father	0.140***	436.4	69.29***
$demonstration \ effects$	(0.050)	(361.1)	(13.63)
Non-Mino. father	0.033	-19.33	98.70***
$demonstration\ effects$	(0.065)	(453.5)	(18.73)
Difference in father	0.107	455.8	-29.40
$demonstration\ effects$	(0.102)	(720.7)	(18.36)
Mino. mother	-0.090	135.8	0.754
$demonstration \ effects$	(0.062)	(476.0)	(10.15)
P demographics	Yes	Yes	Yes
O demographics	Yes	Yes	Yes
Observations	12,232	12,232	12,232
R-squared	0.201	0.050	0.601

Table A.6: Heterogeneity Check: Living in a community with minority ethnic groups

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.1. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K. The standard error is clustered at the prefectural city level for the CHARLS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for the CHARLS. maleP is the gender of P. minority is a dummy representing whether P live in communities with any minority ethnic groups, and it interacts with key regressors. sex ratio K is the gender ratio of K in the household of P and the mother demonstration effect for P living in communities with any minority ethnic groups. sex $ratioK \times minority$ represents the difference between the mother demonstration effects for P living in communities with any minority ethnic groups and the mother demonstration effects for P living in Han-only communities, which should be negative and significant if the mother demonstration effects for P living in communities with any minority ethnic groups are larger than the mother demonstration effects for P living in Han-only communities.

		: CHFS (most	
VARIABLES	$any\-transfer$	amount	visit days
naleP	-0.0558	-212.6	15.15
	(0.135)	(537.3)	(36.25)
ex_ratioK	-0.184	-93.91	-5.164
(Non-Han mother	(0.161)	(558.5)	(45.56)
$demonstration \ effects)$			
Ian	-0.0462	-23.79	30.46
	(0.0677)	(411.8)	(9.165)
$naleP \times sex \ ratioK$	0.0618	253.8	16.61
_	(0.226)	(935.7)	(66.02)
ex ratioK imes Han	0.126	7.621	-47.45
Difference in mother	(0.166)	(556.6)	(46.18)
$lemonstration \ effects)$			
naleP imes Han	0.0133	-10.09	-24.61
	(0.136)	(506.5)	(38.11)
ex ratioK imes Han	-0.0355	-20.43	42.04
$\times maleP$	(0.241)	(889.5)	(72.12)
Han father	-0.031	147.0	6.036
demonstration effects	(0.047)	(189.5)	(20.19)
Non-Han father	-0.122	159.8	11.44
demonstration effects	(0.191)	(690.2)	(46.56)
Difference in father	0.091	-12.81	-5.408
demonstration effects	(0.199)	(650.6)	(56.40)
Han mother	-0.058*	-86.28	-52.61***
demonstration effects	(0.034)	(130.7)	(11.19)
² demographics	Yes	Yes	Yes
O demographics	Yes	Yes	Yes
Deservations	19,509	19,509	19,509
R-squared	0.280	0.203	0.160

Table A.7: Heterogeneity Check: Ethnic groups

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** $p{<}0.01,$ ** $p{<}0.05,$ * $p{<}0.1.$ The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, $hukou\ {\rm status},\ {\rm household}$ income and hours of O taking care of P's K. The standard error is clustered at the province level for the CHFS. The IV is the gender of the first child for households having at least one child in or after 2003 for the CHFS. male P is the gender of P. Han is a dummy representing whether P's ethnicity is Han, and it interacts with key regressors. sex ratioK is the gender ratio of K in the household of P and the mother demonstration effect for P as Han. sex $ratio K \times Han$ represents the difference between the mother demonstration effects for P as Han and the mother demonstration effects for P as other minority ethnic groups, which should be negative and significant if the mother demonstration effects for ${\cal P}$ as Han are larger than the mother demonstration effects for ${\cal P}$ as other minority ethnic groups.

	IV: CHA	RLS (mostly	rural)	IV: CH	FS(mostly u	rban)
VARIABLES	any-transfer	amount	$visit\ days$	any-transfer	amount	visit days
maleP	-0.104	-780.7**	-17.08	-0.0448	-354.0*	-29.87
	(0.0654)	(369.9)	(14.29)	(0.0592)	(199.6)	(18.96)
sex_ratioK	-0.0214	-153.4	8.847	-0.0789	-470.0**	-67.30***
(Low income mother	(0.0628)	(339.8)	(10.93)	(0.0514)	(212.2)	(14.98)
demonstrate effects)						
high income	0.0553	-600.1	24.80***	0.00333	-587.2***	-19.90*
	(0.0567)	(426.7)	(9.306)	(0.0400)	(186.2)	(11.44)
$maleP \times sex \ ratioK$	0.198^{**}	$1,136^{**}$	69.74***	0.0326	500.9	105.2***
	(0.0870)	(484.7)	(19.72)	(0.0904)	(335.2)	(29.20)
$sex_ratioK \times high income$	-0.0451	-256.4	-22.31	0.0121	778.4^{**}	41.26**
(Differences in mother	(0.0930)	(625.2)	(16.06)	(0.0728)	(361.8)	(19.03)
demonstrate effects)						
$maleP \times high \ income$	0.130	1,202**	-42.42***	-0.0141	229.5	50.48**
	(0.0856)	(593.2)	(14.58)	(0.0721)	(254.8)	(22.78)
$maleP \times sex_ratioK$	-0.276*	-1,676*	39.33^{*}	0.0183	-513.5	-112.3***
$\times high \ income$	(0.142)	(857.1)	(23.61)	(0.130)	(466.6)	(38.19)
High income father	-0.145**	-949.1*	95.61***	-0.016	295.8	-33.14
$demonstrate \ effects$	(0.068)	(502.8)	(16.47)	(0.062)	(289.8)	(26.55)
Low income father	0.176***	983.0***	78.58***	-0.046	30.91	37.92*
demonstrate effects	(0.043)	(311.8)	(15.94)	(0.063)	(265.1)	(22.25)
Differences in father	-0.321***	-1932.2***	17.02	0.030	264.9	-71.06**
$demonstrate \ effects$	(0.093)	(702.0)	(16.95)	(0.088)	(382.1)	(32.02)
High income mother	-0.066***	-409.7	-13.46	-0.067	308.4	-26.03*
$demonstrate \ effects$	(0.065)	(635.4)	(11.10)	(0.048)	(239.7)	(13.29)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,232	12,232	12,232	19,509	19,509	19,509
R-squared	0.195	0.047	0.600	0.280	0.199	0.154

Table A.8:	Heterogeneity	Check:	Household	income l	evel
------------	---------------	--------	-----------	----------	------

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p < 0.01, ** p < 0.05, * p < 0.1. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (*any-transfer*), the amount of any transfer provided (*amount*), and the number of days spent on visits paid to their elderly parents per year (*visit days*). The key controls are *P*'s household-size, gender, age, income education, *hukou* status, whether live in urban areas, siblings, marital status, occupation, distance from *O*, and *O*'s transfer to *P*, age, education, working status, retirement status, any deposit, *hukou* status, household income and hours of *O* taking care of *P*'s *K*, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 for the CHFS. *maleP* is the gender of *P*. *high income* is a dummy representing *P*'s income-level, and it interacts with key regressors. *sex_ratioK* is the gender ratio of *K* in the household of *P* and the mother demonstration effects for *P* with high-level income. *sex_ratioK* × *high income* represents the difference between the mother demonstration effects for *P* with high-level income and the mother demonstration effects for *P* with high-level income and the mother demonstration effects for *P* with high-level income and the mother demonstration effects for *P* with low-level income, which should be negative and significant if the mother demonstration effects for *P* with low-level income.

	IV: CHAR	RLS (mostly	y rural)	IV: C	HFS(mostly u	ırban)
VARIABLES	any-transfer	amount	$visit\ days$	any-transfer	amount	$visit\ days$
maleP	-0.0623	1,069	-15.65	0.00656	-394.9	-28.71
	(0.104)	(998.0)	(20.78)	(0.0829)	(317.8)	(37.09)
sex_ratioK	0.0160	-209.2	-4.973	0.0329	-854.0***	-100.4***
(non-singleK HH mother	(0.115)	(777.9)	(17.51)	(0.0835)	(264.2)	(38.34)
$demonstrate \ effects)$						
single K	0.0346	16.06	0.577	0.0822*	-472.6***	-23.44
	(0.0635)	(456.5)	(10.84)	(0.0441)	(160.4)	(22.81)
$maleP \times sex \ ratioK$	0.112	-605.5	118.8***	-0.0838	769.1	177.9**
—	(0.198)	(1,706)	(38.17)	(0.161)	(634.6)	(70.41)
$sex_ratioK \times singleK$	-0.0830	50.71	5.181	-0.141	1,020***	68.50
(Differences in mother	(0.125)	(766.7)	(19.55)	(0.0872)	(305.3)	(43.22)
demonstrate effects)		. ,				. ,
$maleP \times singleK$	-0.00938	-1,004	1.102	-0.0794	286.8	61.52*
	(0.128)	(1, 170)	(20.48)	(0.0780)	(279.8)	(37.03)
$maleP imes sex_ratioK$	0.0281	1,192	-44.64	0.162	-684.1	-166.7^{**}
$\times single K$	(0.232)	(1,991)	(36.89)	(0.154)	(543.5)	(69.94)
singleK HH father	0.073	428.5	74.32***	-0.031	250.7*	-20.66
$demonstrate \ effects$	(0.049)	(409.4)	(11.42)	(0.036)	(146.2)	(15.62)
Non-singleK HH father	0.128	-814.6	113.7***	-0.051	-84.88	77.49
$demonstrate\ effects$	(0.129)	(1,053)	(30.72)	(0.119)	(567.3)	(63.71)
Differences in father	-0.055	1,243	-39.46	0.020	335.6	-98.16
$demonstrate \ effects$	(0.167)	(1, 399)	(28.09)	(0.108)	(507.1)	(64.70)
singleK HH mother	-0.061*	-158.4	0.207	-0.108***	165.7	-31.86***
$demonstrate\ effects$	(0.040)	(380.3)	(8.022)	(0.034)	(158.6)	(11.10)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,232	12,232	12,232	19,509	19,509	19,509
R-squared	0.200	0.047	0.597	0.278	0.198	0.151

Table A.9: Heterogeneity Check: Single child family

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p < 0.01, ** p < 0.05, * p < 0.1. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 for the CHFS. maleP is the gender of P. singleK is a dummy representing whether P have only one child, and it interacts with key regressors. sex_ratioK is the gender ratio of K in the household of P and the mother demonstration effect for P with only one child. sex_ratioK × singleK represents the difference between the mother demonstration effects for P with only one child and the mother demonstration effects for P with only one child and the mother demonstration effects for P with only one child and the mother demonstration effects for P with more than one child.

	IV: CHAI	RLS (mostly	v rural)	IV:	CHFS(mostly	v urban)
VARIABLES	any-transfer	amount	$visit\ days$	any-transfer	amount	$visit\ days$
maleP	-0.108*	-773.6*	-39.24**	0.0675	118.6	-95.96*
	(0.0618)	(406.0)	(15.80)	(0.131)	(314.6)	(51.21)
sex_ratioK	-0.0640	-495.6	-4.914	0.00835	-522.6*	-16.54
(Rural mother	(0.0605)	(423.5)	(8.866)	(0.127)	(275.8)	(39.53)
$demonstrate \ effects)$						
urban	-0.0904	-320.3	12.19	0.0987	-131.6	23.86
	(0.0615)	(494.2)	(11.21)	(0.0852)	(178.5)	(24.47)
$maleP \times sex_ratioK$	0.133	1,234**	99.33***	-0.154	-251.1	259.7***
	(0.0828)	(622.2)	(20.21)	(0.196)	(482.3)	(75.87)
$sex_ratioK \times urban$	0.0489	674.6	17.13	-0.0905	526.2	-46.43
(Differences in mother	(0.103)	(858.2)	(18.51)	(0.150)	(336.5)	(40.78)
$demonstrate \ effects)$						
$maleP \times urban$	0.0511	1,358*	15.15	-0.125	-391.4	92.35*
	(0.0751)	(765.2)	(13.60)	(0.116)	(336.2)	(48.16)
$maleP \times sex_ratioK$	-0.0125	-2,108*	-50.96**	0.219	604.9	-233.3***
$\times urban$	(0.131)	(1,219)	(21.06)	(0.196)	(580.7)	(77.24)
Urban father	0.104*	-694.7	60.59***	-0.017	357.3	-36.54*
$demonstrate \ effects$	(0.062)	(519.9)	(14.63)	(0.042)	(251.1)	(21.54)
Rural father	0.068*	738.5**	94.41***	-0.145	-773.7*	243.1***
$demonstrate \ effects$	(0.041)	(308.1)	(17.54)	(0.133)	(408.0)	(66.24)
Differences in father	0.036	-1,433**	-33.82*	0.128	1,131**	-279.7***
demonstrate effects	(0.088)	(703.3)	(18.08)	(0.132)	(533.4)	(73.37)
Urban mother	-0.015	179.1	12.22	-0.082*	3.561	-62.98***
$demonstrate \ effects$	(0.071)	(813.6)	(16.33)	(0.044)	(154.7)	(11.19)
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,232	$12,\!232$	12,232	19,509	19,509	19,509
R-squared	0.201	0.047	0.601	0.279	0.194	0.094

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p < 0.01, ** p < 0.05, * p < 0.1. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (*any-transfer*), the amount of any transfer provided (*amount*), and the number of days spent on visits paid to their elderly parents per year (*visit days*). The key controls are *P*'s household-size, gender, age, income education, *hukou* status, whether live in urban areas, siblings, marital status, occupation, distance from *O*, and *O*'s transfer to *P*, age, education, working status, retirement status, any deposit, *hukou* status, household income and hours of *O* taking care of *P*'s *K*. The standard error is clustered at the prefectural city level for the CHARLS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for the CHARLS. *maleP* is the gender of *P*. *urban* is a dummy representing whether *P* live in urban areas, and it interacts with key regressors. *sex_ratioK* is the gender ratio of *K* in the household of *P* and the mother demonstration effect for *P* with any older brothers. *sex_ratioK* × *urban* represents the difference between the mother demonstration effects for *P* live in urban areas and the mother demonstration effects for *P* live in urban areas.

	IV: CHAF	LS (mostly	v rural)	IV:	CHFS (mostl	y urban)
VARIABLES	any-transfer	amount	visit days	any-transfer	amount	visit days
Urban-singleton						
maleP	-0.00299	-592.9	8.020	-0.0816**	-180.6	8.082
	(0.0568)	(722.7)	(12.85)	(0.0328)	(131.2)	(13.64)
sex_ratioK	-0.0157	-244.4	7.033	-0.0896***	-13.23	-24.11**
	(0.0670)	(911.7)	(15.49)	(0.0343)	(158.8)	(10.14)
$maleP \times sex_ratioK$	0.00379	877.1	19.02	0.0921	173.6	26.14
	(0.0830)	(1, 215)	(18.31)	(0.0580)	(255.3)	(22.34)
sex ratioK+	-0.012	632.7	26.04**	0.002	160.3	2.028
$maleP \times sex_ratioK$	(0.045)	(622.6)	(12.56)	(0.039)	(157.7)	(17.27)
Observations	2,466	2,466	2,466	9,364	9,364	9,364
R-squared	0.230	0.085	0.612	0.254	0.206	0.128
Others						
maleP	-0.142**	55.45	-29.65**	0.0655	-301.6	-6.517
	(0.0593)	(346.3)	(14.86)	(0.103)	(369.0)	(38.15)
$sex \ ratioK$	-0.0634	-279.4	-3.850	-0.0101	-258.5	-122.7***
_	(0.0526)	(430.1)	(8.439)	(0.0650)	(181.0)	(29.26)
$maleP \times sex \ ratioK$	0.184^{***}	391.7	92.12***	-0.149	477.7	127.6**
_	(0.0681)	(504.5)	(17.89)	(0.140)	(538.1)	(53.40)
sex ratioK+	0.121***	112.2	88.26***	-0.158	219.1	4.876
$maleP \times sex_ratioK$	(0.030)	(179.7)	(14.27)	(0.099)	(436.5)	(40.35)
Observations	9,766	9,766	9,766	10,145	10,145	$10,\!145$
R-squared	0.195	0.043	0.610	0.293	0.136	0.196
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes

Table A.11: Subsample analysis: Urban-singleton households

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.1. maleP is the gender of P. sex_ratioK is the gender ratio of K in the household of P and represents the mother demonstration effect. sex_ratioK + maleP × sex_ratioK shows the father demonstration effect. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for the CHARLS and the gender of the first child for households having at least one child in or after 2003 for the CHFS. The sample is split based on whether P live in urban areas and have only one child.

	IV: CHARLS (mostly rural)				
VARIABLES	any-transfer	amount	visit days		
maleP	-0.138**	-483.6	-30.12**		
	(0.0549)	(421.6)	(13.41)		
$sex \ ratio K$	-0.0851	-662.8	4.674		
$(Without \ older \ brothers$	(0.0578)	(473.8)	(9.214)		
mother demonstrate)					
older bro	-0.0370	-559.4	17.30		
	(0.0564)	(437.7)	(10.88)		
$maleP \times sex_ratioK$	0.239^{***}	851.1	73.15***		
	(0.0729)	(604.3)	(18.52)		
$sex ratioK \times older bro$	0.104	1,013	-17.87		
(Differences in mother demonstrate effects)	(0.0980)	(718.1)	(17.44)		
$maleP \times older \ bro$	0.212***	519.7	-24.12		
	(0.0736)	(725.1)	(15.26)		
$maleP imes sex_ratioK$	-0.358^{***}	-721.7	37.93		
$\times older \ bro$	(0.125)	(1,183)	(24.21)		
With older brothers	-0.101	479.5	97.87***		
father demonstrate	(0.063)	(754.3)	(16.26)		
Without older brothers	0.154***	188.3	77.82***		
father demonstrate	(0.035)	(256.5)	(14.61)		
Differences in father	-0.255***	291.2	20.05		
demonstrate effects	(0.078)	(909.5)	(14.35)		
With older brothers	0.019	350.2	-13.20		
$mother \ demonstrate$	(0.074)	(615.3)	(13.96)		
P demographics	Yes	Yes	Yes		
O demographics	Yes	Yes	Yes		
Observations	12,232	12,232	12,232		
R-squared	0.196	0.049	0.599		

Table A.12: Heterogeneity Check: Family compositions of P

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p < 0.01, ** p < 0.05, * p < 0.1. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, $hukou\ {\rm status},\ {\rm whether}$ live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K. The standard error is clustered at the prefectural city level for the CHARLS. The IVs is the gender of the first child born in or after 2003 and the prefectural compliance index for the CHARLS. maleP is the gender of P. older bro is a dummy representing whether P have any older brothers, and it interacts with key regressors. sex ratioK is the gender ratio of K in the household of P and the mother demonstration effect for P with any older brothers. $sex_ratioK \times old \ bro$ represents the difference between the mother demonstration effects for P with any older brothers and the mother demonstration effects for ${\cal P}$ without any older brothers, which should be negative and significant if the mother demonstration effects for P with any older brothers are larger than the mother demonstration effects for P without any older brothers.

	IV: CHAR	LS (mostly	v rural)	IV:	CHFS(mostly	v urban)
VARIABLES	$any\mathchar`-transfer$	amount	$visit\ days$	$any\-transfer$	amount	visit days
maleP	-0.121**	-325.3	-10.26	-0.0533	-240.2	-3.723
mater	(0.0595)	(312.8)	(9.130)	(0.0521)	(185.3)	(16.79)
sex_ratioK	-0.116**	-302.3	-2.654	-0.0127	5.500	-37.15***
_	(0.0494)	(403.7)	(7.169)	(0.0374)	(135.3)	(10.36)
$maleP \times sex_ratioK$	0.224^{***}	649.7	47.79***	0.0422	261.0	50.83**
	(0.0772)	(448.7)	(11.04)	(0.0747)	(309.2)	(24.52)
hh-size	-0.00751	-26.42	-3.820*	-0.00589	-16.78	-10.09***
	(0.0136)	(74.95)	(2.000)	(0.00685)	(19.78)	(1.273)
$maleP \times hh$ -size	0.00385	355.5**	14.50^{***}	-0.000755	41.74	17.12***
	(0.0136)	(145.8)	(2.750)	(0.00860)	(27.53)	(3.122)
$sex_ratioK+$	0.108***	347.4^{*}	45.13***	0.030	266.4	13.67
$maleP \times sex_ratioK$	(0.050)	(181.4)	(7.853)	(0.055)	(219.6)	(18.58)
Transfer from O	No	No	No	No	No	No
O taking care for K	No	No	No	No	No	No
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,232	12,232	12,232	12,232	12,232	12,232
R-squared	0.084	0.049	0.670	0.214	0.186	0.140

Table A.13: The demonstration effect without controlling for the transfers from generation O

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p<0.01, ** p<0.05, * p<0.1. maleP is the gender of P. sex_ratioK is the gender ratio of K in the household of P and represents the mother demonstration effect. sex_ratioK + maleP × sex_ratioK shows the father demonstration effect. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's age, education, working status, retirement status, any deposit, hukou status, and household income, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for the CHARLS and the gender of the first child for households having at least one child in or after 2003 for the CHFS.

	IV: CHAR	LS (mostly	v rural)	IV:	CHFS(mostly	v urban)
VARIABLES	$any\mathchar`-transfer$	amount	$visit\ days$	$any\mathchar`-transfer$	amount	visit days
Low gender-ratio pr	ovinces					
maleP	0.0418	-30.36	-10.22	-0.00266	-421.3*	10.49
	(0.0591)	(385.4)	(12.11)	(0.0458)	(231.0)	(17.75)
$sex \ ratioK$	-0.00135	-254.9	7.162	-0.0331	-228.8*	-4.708
	(0.0392)	(220.0)	(6.782)	(0.0300)	(138.7)	(9.741)
$maleP \times sex_ratioK$	0.0292	228.6	36.96^{***}	0.0274	249.2	-15.74
	(0.0507)	(358.5)	(13.74)	(0.0477)	(182.5)	(13.99)
$sex_ratioK+$	0.028	-26.33	44.12***	-0.006	20.40	-20.45**
$maleP \times sex_ratioK$	(0.025)	(243.4)	(11.26)	(0.032)	(151.6)	(9.702)
Observations	3,373	3,373	3,373	2,672	2,672	2,672
R-squared	0.199	0.090	0.690	0.185	0.230	0.145
High gender-ratio pr	rovinces					
maleP	0.0959*	109.4	-15.82	-0.0270	-52.15	24.94
	(0.0499)	(758.5)	(19.98)	(0.0453)	(256.2)	(30.53)
sex_ratioK	-0.0326	-103.9	-19.32**	0.00924	-114.6	-16.13
	(0.0423)	(674.4)	(8.086)	(0.0485)	(178.1)	(12.19)
$maleP \times sex_ratioK$	0.00560	630.6	83.06***	0.0430	147.1	13.21
_	(0.0529)	(852.2)	(21.12)	(0.0484)	(280.7)	(35.44)
$sex_ratioK+$	-0.027	526.6^{*}	63.74^{***}	0.052	32.46	-2.917
$maleP \times sex_ratioK$	(0.027)	(318.2)	(16.47)	(0.056)	(170.3)	(35.67)
Observations	2,489	$2,\!489$	2,490	1,454	1,454	1,454
R-squared	0.265	0.065	0.717	0.255	0.316	0.199
P demographics	Yes	Yes	Yes	Yes	Yes	Yes
O demographics	Yes	Yes	Yes	Yes	Yes	Yes

Table A.14: Subsample check	: High and low	gender-ratio provinces	(after 2003 samples only)

Notes: Robust standard errors in parentheses. Stars indicate statistical significance. *** p < 0.01, ** p < 0.05, * p < 0.1. maleP is the gender of P. sex_ratioK is the gender ratio of K in the household of P and represents the mother demonstration effect. sex_ratioK + maleP × sex_ratioK shows the father demonstration effect. The three outcome variables are the dummy indicating whether parents provide any financial transfer to their elderly parents (any-transfer), the amount of any transfer provided (amount), and the number of days spent on visits paid to their elderly parents per year (visit days). The key controls are P's household-size, gender, age, income education, hukou status, whether live in urban areas, siblings, marital status, occupation, distance from O, and O's transfer to P, age, education, working status, retirement status, any deposit, hukou status, household income and hours of O taking care of P's K, depending on the availability of the information in the CHARLS and the CHFS. The standard error is clustered at the prefectural city level for the CHARLS and the cluster-level is the province-level in the CHFS. The IVs are the gender of the first child for households having at least one child in or after 2003 and the prefectural compliance index for the CHARLS and the gender of the first child for households having at least one child in or after 2003 for the CHFS. The sample only contains P who have their first child on or after 2003. This sample is split based on the province-level of gender-ratios.